Clinical Chemistry Practical

Pages 2 (502 words)
Download 0
A patient Ms X has been admitted to hospital; she is semi comatose and unresponsive. No medical history is available. She is approximately 40-50 years old, she has a respiratory rate of 31 and a blood Ph of 7.05, her breath has a very distinctive odour.
A blood sample has been obtained, it has been centrifuged and plasma separated for analysis.


The supernatant was neutralized with 3.2M K2CO3. After recentrifugation, the glucose fraction was extracted from the second supernatant by rapid sequential anion and cation exchange chromatography . The fraction containing glucose was dried before derivatization . The 297-to-299 ionic ratio responses were calculated in terms of isotopic enrichments using a standard curve made up from a known enrichment of glucose solutions.
The diagnosis is diabetic ketoacidosis (DKA). Three key features of diabetic ketoacidosis are hyperglycemia, ketosis, and acidosis. The conditions that cause these metabolic abnormalities overlap. DKA is defined as an increase in the serum concentration of ketones greater than 5 mEq/L, a blood glucose level of greater than 250 mg/dL (although it is usually much higher),blood pH of less than 7.2, and a bicarbonate level of 18 mEq/L or less. DKA usually occurs as a consequence of absolute or relative insulin deficiency that is accompanied by an increase in counter-regulatory hormones (ie, glucagon, cortisol, growth hormone, epinephrine). This type of hormonal imbalance enhances hepatic gluconeogenesis, glycogenolysis, and lipolysis.
Hepatic gluconeogenesis, glycogenolysis secondary to insulin deficiency, and counter-regulatory hormone excess result in severe hyperglycemia, while lipolysis increases serum free fatty acids. ...
Download paper
Not exactly what you need?