Nobody downloaded yet

Summary

Waring proposed a generalisation of this theorem in 1770, stating that every natural number is the sum of a fixed number g(k) of kth power integers, where k is any given… Read TextPreview

- Subject: Miscellaneous
- Type: Essay
- Level: Undergraduate
- Pages: 6 (1500 words)
- Downloads: 0
- Author: hansenjacey

Save Your Time for More Important Things

Let us write or edit the essay on your topic
"Mathematics"
with a personal 20% discount.

GRAB THE BEST PAPERMathematics

- Tags:
- 1920S
- 1940S
- Binary
- Binary Oppositions
- Boyz N
- Computation
- Mathematics
- Mathematics Investigation
- Nectar In A Sieve
- Sieve

If we let "s" stand for the number of kth powers, then g(k) is the least such "s" powers. Some examples of g(k) are: g(1) = 1; g(2) = 4, since from Lagranges 4-square theorem, every natural number is the sum of atleast 4 squares. In addition it was found that 7 requires 4 squares and 23 requires 9 cubes.

Progress was made on Warings Problem by establishing bounds, or the maximum number of powers. For instance, Liouville found that g(4) is at most 53. The work of Hardy and Littlewood also led to other bounds; in particular, they found the upper bound for g(k) to be O(k2k+1).

The work of Hardy and Littlewood also led to the realization that the number G(k) is more fundamental than g(k). Here, G(k) is the least positive integer s such that every sufficiently large integer (greater than some constant) is a sum of at most s kth powers of positive integers. A formula for the exact value of G(k) for all k has not been found, but there have been many bounds established.

1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899, 2102137, 4201783, 8399828, 16794048, 33579681, 67146738, 134274541, 268520676, 536998744, 1073933573, 2147771272

Hilberts proof of Warings Problem for all positive k can be seen as proving an equivalent theorem: There are positive integers A and M and positive rationals 1, ..., M, depending only on k, such that each integer N A can be written in the form

Many generalizations of Waring’s Problem have been made. For instance, there is the prime Waring’s problem, and generalizations of the problem to algebraic number fields and arbitrary fields. The problem known as the “easier” Waring’s Problem takes the integer n to be a sequence of numbers x, each to the kth power. All of these variations have led to a Mathematics Subject Classification 11P05 entitled “Waring’s Problem and variants.”

In 1742, Goldbach suggested that every ... Read More

Progress was made on Warings Problem by establishing bounds, or the maximum number of powers. For instance, Liouville found that g(4) is at most 53. The work of Hardy and Littlewood also led to other bounds; in particular, they found the upper bound for g(k) to be O(k2k+1).

The work of Hardy and Littlewood also led to the realization that the number G(k) is more fundamental than g(k). Here, G(k) is the least positive integer s such that every sufficiently large integer (greater than some constant) is a sum of at most s kth powers of positive integers. A formula for the exact value of G(k) for all k has not been found, but there have been many bounds established.

1, 4, 9, 19, 37, 73, 143, 279, 548, 1079, 2132, 4223, 8384, 16673, 33203, 66190, 132055, 263619, 526502, 1051899, 2102137, 4201783, 8399828, 16794048, 33579681, 67146738, 134274541, 268520676, 536998744, 1073933573, 2147771272

Hilberts proof of Warings Problem for all positive k can be seen as proving an equivalent theorem: There are positive integers A and M and positive rationals 1, ..., M, depending only on k, such that each integer N A can be written in the form

Many generalizations of Waring’s Problem have been made. For instance, there is the prime Waring’s problem, and generalizations of the problem to algebraic number fields and arbitrary fields. The problem known as the “easier” Waring’s Problem takes the integer n to be a sequence of numbers x, each to the kth power. All of these variations have led to a Mathematics Subject Classification 11P05 entitled “Waring’s Problem and variants.”

In 1742, Goldbach suggested that every ... Read More

Cite this document

(“Mathematics Essay Example | Topics and Well Written Essays - 1500 words”, n.d.)

Retrieved from https://studentshare.net/miscellaneous/339382-mathematics

Retrieved from https://studentshare.net/miscellaneous/339382-mathematics

(Mathematics Essay Example | Topics and Well Written Essays - 1500 Words)

https://studentshare.net/miscellaneous/339382-mathematics.

https://studentshare.net/miscellaneous/339382-mathematics.

“Mathematics Essay Example | Topics and Well Written Essays - 1500 Words”, n.d. https://studentshare.net/miscellaneous/339382-mathematics.

Comments (0)

Click to create a comment

Let us find you another Essay on topic Mathematics for **FREE!**