Wave Overtopping on Coastal Structures

Pages 14 (3514 words)
Download 0
Breakwaters are used extensively along coastlines all over the Earth and those that can allow wave overtopping without significant damage to effective structures and, thus, to properties and life they shelter are considered of eminent construction.


Traditionally, laboratory experiments and field observations have been used to study this turbulent oceanographic phenomenon and empirical formulae have been derived from these but severe limitations existed since parameters to which these derivations fitted were local (Shao, 2006). Thus, in recent time, universal derivations that can fit across a wide range of parametric requirements of structure geometry, water conditions and wave dynamics are considered essential and desirable. To this end, fluid dynamics proves a somewhat reliable model generator but traditional Eulerian approaches that discretise governing equations over a computational field divided into a grid system based on local parameters develop problems of numerical diffusion that transcends localised grid patterns and tend to encompass the entire grid so that the discretised development of the equation into an unified whole is seriously affected (Shao, 2006). More recently, to solve this diffusion effect for traditional dynamics, a particle method has been developed wherewith the discretised equation utlises individual particles in the flow as centres of development. The diffusion effect is effectively smoothed by a functional kernel that identifies and utilises the combined functions of the angular and linear momentums of each particle (Shao, 2006). ...
Download paper
Not exactly what you need?