Recumbent tricycle brake

Research Paper
Pages 6 (1506 words)
Download 0
A special disc is attached to the wheel hub of bicycle which rotates with wheel. Callipers are attached to the frame or fork .Callipers consists of brake pads and piston. When brakes are applied pads are squeezed on the disc thus slowing down the bicycle.


We have selected Disc type of brakes for the above project. As these are more powerful than the remaining two. As braking power is high this will be of great help for disabled person. They also perform better in water compared to rim brakes. Disk brakes are able to operate at a higher mechanical advantage than rim brakes because disc rotors in good condition are more true than rims in good condition, and as such do not need to retract as far from the rim when released.
The first basic problem (Annan,James) of a disk brake is that the position of the disk calliper means that the frictional force of the brake pads on the disk acts largely to push the wheel downwards, broadly in the direction of the open fork ends. The force that the pads exert on the disk is very large - much much greater than the force from a rim brake (due to the smaller diameter of a disk compared to wheel rim) and it is also at an inappropriate angle.
The relevant forces and dimensions on the wheel are indicated. We have the braking force B and the ground reaction force R acting at the contact patch. The disk calliper exerts a force D as indicated, tangential to the disc at the point of calliper contact. The radii of the disk and wheel are r1 and r2, and finally the angle of the dropout exit is 'A' in front of vertical. For this fork and calliper, the force D is virtually vertical. If it wasn't, there would be another angle 'b' for the angle the disk force makes behind the vertical.
Let's a ...
Download paper
Not exactly what you need?