StudentShare
Contact Us
Sign In / Sign Up for FREE
Search
Go to advanced search...
Free

Aspect of Human Genetic Engineering - Case Study Example

Cite this document
Summary
The paper 'Aspect of Human Genetic Engineering' presents human genetic engineering which is a science that still happens to be in its infant stage. There is much that is unknown about human genetics and how human intervention in human genetic makeup influences human health…
Download full paper File format: .doc, available for editing
GRAB THE BEST PAPER94.3% of users find it useful
Aspect of Human Genetic Engineering
Read Text Preview

Extract of sample "Aspect of Human Genetic Engineering"

of the English of the Concerned 2 May Human Genetic Engineering Human genetic engineering is a science that still happens to be in its infant stage (Bethell 38). There is much that is unknown about the human genetics and as to how human intervention in the human genetic makeup influences the human health and well being. Still, it is a fact that the human genetic engineering happens to be a very controversial and divisive issue. There are people who believe that the man has no right to interfere in the human genetic makeup. Yet, there are supporters of human genetic engineering who believe that genetic engineering can do much good to the mankind. They say that genetic engineering could be used to find a cure for many incurable human diseases. As already said, genetic engineering being a relatively new science, it is very difficult to say as to what good or harm it could do to the mankind (Bethell 38). Intervention in the human genetics is something that is still associated with much fear and apprehension. The scientists who are directly associated with the human genetic engineering do claim that by replacing some human genes, they can cure many human ailments. Irrespective of the confidence of a significant section of the scientific community in the human genetic engineering, there still is not much data that could assure that the human genetic engineering is safe. Pragmatically speaking, the human genetic engineering stands to be wrong and unethical because, it amounts to the humans playing God, it stands contrary to the essential human values, it is just like the science of eugenics, it is a very risky science, and it could reduce science to a discipline replete with abject greed and commercialism. Human genetic engineering amounts to meddling with something that is beyond human comprehension and understanding. It is akin to playing God (Graham 8). It took nature billions of years to create the earth, its environment and the man. Thereby, human configuration is something that happens to be very complex and intricate. There is no human being who can claim that one has the capacity to understand all the aspects of creation and can meddle with the human genetic makeup with perfect confidence and ease. Yet, there are scientists who do have the audacity to say that they could easily manipulate the human genetic makeup to achieve the desired results. There is no denying the fact that such experts are entirely misplaced in their belief and confidence. They simply do not understand the complexity and immensity of the natural world around them. Driven by their misplaced beliefs they are willing to play the God (Graham 8). They think that they do have the power and the capacity to meddle with the human genetics, when the reality is that they do not even know the very basics of the human genetic complexity. The thing that needs to be understood is that God created man to be a perfect being that could not be improved on any more. Yet, there are many genetic engineers who are willing to challenge the perfection and omnipotence of God, driven by a few false beliefs and values. God creates every human being just as He exactly intends them to be. Thereby, to use genetic engineering to alter or change the makeup of a human being is just like trying to play God. The fact is that no man can improve an individual that has been created by nature. The other thing is that going by the fact that the scientists still do not know much about the ways of nature, thereby using genetic engineering to alter the makeup of human body could lead to much pain and suffering for the mankind. Hence, the human genetic engineering is a science that dares to question the perfection and the power of God. Thereby it certainly could not be deemed to be something good and useful. One other aspect of the human genetic engineering is that it is a science that blatantly violates the essential human values and challenges the human dignity (Annas 37). As already said, nature made every human being to be perfect and somebody that stands to be unique and dignified. In that context the humanity does need to value and respect the essential uniqueness of every human being and must treat one with much dignity and respect. Herein lays the essence of the essential human dignity. Considering this fact, if a genetic engineer or a geneticist tries to manipulate or meddle with the genetic configuration of a person or tries to use the science of genetics to produce babies having the desired physical and mental features, this violates the basic human dignity and the core human values (Annas 37). This sends a message to the individuals who are differently enabled and happen to differ in their physical and mental makeup that they are not perfect and are not to be valued. Hence, the science of human genetic engineering violates the core human values and the basic human dignity. It takes away from the people they right to believe that each and every human being, irrespective of one’s imperfections, happens to be unique and thereby deserves human dignity and respect. Hence, the science of human genetic engineering needs to be restrained and disciplined before it divests the human identity of all its ethical and moral values. No scientist has the right to take away from an individual the very belief that one is unique and perfect and hence must be valued and appreciated for one’s individuality and uniqueness (Annas 38). In contrast, human genetic engineering in a way happens to assert the belief that since science can create more perfect individuals by interfering with their genetic makeup, hence the individuals who have more than perfect physical and mental features happen to be inferior and defective. No doubt this approach towards life is indeed shallow and superficial. People need to be valued for their true character and qualities. Instead, human genetic engineering lays stress on the achievement of superficial aspects of human personality like looks and IQ. The other negative thing about the human genetic engineering is that it happens to be very much like the science of eugenics that intends to create people having better physical and mental attributes by interfering with the human ability for reproduction (Krimsky 156). In a historical context, many infamous political groups like the Nazis and the Fascists used the science of eugenics to establish the superiority of their race over the other races like the Jews and the Blacks. In the current times the problem with the science of human genetic engineering is that it happens to very much like the science of eugenics. For many geneticists, one salient aim of the human genetic engineering is to produce humans who happen to be much superior in beauty and IQ to the general masses (Krimsky 157). Thereby, these designs do intend to split the human population into two groups. There will be rich people who will afford to spend money to enhance their muscle mass, height, beauty and IQ. On the other side there will be poor people who owing to their poverty will not be able to use the science of genetic engineering to better their physique, looks and mental ability. Practically speaking, this will indeed give way to an unbalanced and lopsided society in which the rich will continue to become better and more intelligent, while the poor will get sidelined and ignored. Hence, the science of human genetic engineering must be restrained as it could give way to a society that happens to be genetically divided. A significant section of the scientific community simply does not understand the fact that human genetic engineering must be discouraged because it happens to be a science replete with much risk and danger (Perl 118). One cannot deny the fact that many of the human geneticists happen to be positive in their intentions and aims and intend to use genetic engineering to benefit the human race. However, hijacked by their enthusiasm, they totally ignore the fact that while dabbling with the human genes; they are trying to manipulate something that they simply do not understand. Driven by the belief that the human genetics could be manipulated to better the human life, scientists could unintentionally give way to many new diseases by creating defective and faulty genes. No doubt, in case this happens, it would spell a total disaster for the human civilization. People infected with genetically created diseases will not only have to suffer their consequences, but these defective genes could get transferred to their children, leading to an uncontrolled proliferation of these diseases. When one stops to consider such a scenario, when indeed gets numbed by a feeling of revulsion and helplessness. Human genetic makeup is something that is very intricate and complex and that will take many centuries to be properly understood. The irony is that contemporary genetic engineers in their haste to do much good could inadvertently create much suffering and pain for the entire humanity. Thereby, it is time that the concerned experts and authorities around the world give a due consideration to the risks inherent in the human genetic engineering and take concrete steps to regulate and contain the science of human genetic engineering. Otherwise the things may take a dangerous turn and the human genetic engineering could lead to something bad and undesirable. Human genetic engineering is also an ethically wrong science as it has the capacity to reduce science to a discipline replete with abject greed and commercialism (Hildyard & Sexton 69). As already said, human genetic engineering still happens to be in its infant stage. It is a very complex and intricate science. There are only a handful of scientists in the world today who have the expertise in the human genetic engineering. Besides, the other important aspect of the human genetic engineering is that it requires state of the art laboratories and facilities, highly specialized and costly research equipment and prolonged and costly research and development. Thereby, even if the science of human genetic engineering has something to offer to the humanity, the benefits of it will only be accessible to the rich who do afford to pay for the high cost of research associated with the human genetic engineering (Hildyard & Sexton 71). On the other side considering the high cost of research associated with the human genetic engineering, the companies associated with research in this area will be interested in offering their services only to those who could pay them well. Thereby the human genetic engineering is an area of the modern science that is poised to further increase the gap between the rich and the poor and is bound to give way to an imbalanced and biased society. In that context the ramifications of the human genetic engineering for the scientific community also do not happen to be positive. Going by the fact that the humans do happen to be greedy, the human genetic engineering will make the discipline of science vulnerable to abject greed and commercialism. The scientists and companies who will spend and invest resources and money in decoding the intricacies of the human genetic makeup to find the cure for the specific diseases will only sell their services to those patients who could pay the high price. They will deny their services to the sick people who happen to be poor and who could not afford to pay the high price for the cures offered by the human genetic engineering. Thereby, it will be wiser for the scientific community to invest its meager and limited resources to those areas of medicine that do not involve massive research and development expenses and the cures found by those could readily be offered to the poor and the needy. This will allow the governments all around the world to dedicate their medical budgets to those areas of medicine that offer affordable cures for the larger sections of the society. Though research and development does involve much expenditure and investment, still the purpose of science is not to benefit a handful of greedy scientists and corporations, but to offer health and medicine to even those people who are not rich and who simply do not afford costly cures offered by elitist sciences like the human genetic engineering. Thereby, human genetic engineering going by its very high cost of research has not much to offer to the humanity. All that it can do is to make the noble discipline of science open to abject human greed and corporate commercialism. Hence, the research in human genetic engineering must be discouraged by the society because it involves much investment without offering commensurate benefits and cures. It is as simple as that. There is no denying by the fact that a large section of the society and the scientific community is not only very hopeful of human genetic engineering but also believes that if human genetic engineering is not given a chance, the humanity may lose the chance to find cures for many incurable diseases. The thing that needs to be considered is that the human genetic engineering is still a new science that has indeed failed to offer a viable cure for a large number of diseases that impact the humanity all around the world. The human genetic makeup happens to be very complex and commonsensical speaking; it will take decades for human genetic engineering to find an affordable and realistic cure for any important and widespread human ailment. Thereby, the enthusiasm evinced by the supporters of human genetic engineering is misplaced and impractical. It will be wiser for the societies and communities around the world to invest in and rely on the traditional medicinal approaches that have a long history of offering cures for some of the most dangerous human diseases. These approaches towards medicine have an outstanding record of helping the suffering humanity and they are not that dangerous and risky. Thereby, the very idea that human genetic engineering could offer cures for many of the notorious human ailments may turn out to be true after a very long period of time when the scientists have culled out many reliable conclusions after prolonged research and development. In the present context, human genetic engineering has not much to offer. Thereby it will be highly impractical to place much trust and faith in the possibilities inherent in human genetic engineering. Actually this may turn out to be foolish and counterproductive as it may impede research in other areas of healthcare that have the capacity to readily offer affordable and quick results. There are also experts and scholars who believe that though human genetic engineering could be used for evil purposes, actually speaking it happens to be an ethical science that could be used for the betterment of the entire humanity. Though such beliefs do sound fine and noble, the reality is that how could one deem such a science to be ethical that is trying to play with the genetic makeup of the people, which has been created by nature over a very long period of time. It will be indeed wrong to consider such a science to be ethical which irrespective of its limited knowledge and understanding of the human genetic makeup is bold enough to claim that it has the capacity to cure many diseases. The geneticists and the scientists around the world need to consider the fact that the way they are meddling with the human genes; it would not be impractical to conclude that someday, by mistake, some geneticist may inflict some irreversible damage to the human genetic code, the proliferation of which may cause much suffering to the entire humanity. Claiming to have the power to dabble with the ways of nature, without evincing due respect for the diversity and power of the nature is indeed audacious and unethical. Hence, human genetic engineering is an area of contemporary science that is highly unethical and wrong. The geneticists interfering with the human genetic code are committing the mistake of playing God, and act which may prove to be dangerous. Besides, human genetic engineering is biased in its approach that happens to discriminate against and insult the differently abled people, ethnic minorities, the poor, and the marginalized sections of the society. It is an area of science that is very dangerous and has the capacity to create faulty genetic codes that could wreck havoc over the earth. Thereby, the concerned agencies and authorities around the world need to strictly regulate and control the research in human genetic engineering. Works Cited Annas, George J. American Bioethics. New York: Oxford University Press, 2004. Print. Bethell, Tom. “The Human Genome Project: Another God that Failed”. The American Spectator February 2004: 38. Print. Graham, Gordon. Genes. London: Routledge, 2002. Print Hildyard, Nicholas, & Sarah Sexton. “No Patents on Life”. Forum for Applied Research and Public Policy 15.1 (2000): 69-72. Print. Krimsky, Sheldon. Biotechnics & Society. Westport, CT: Praeger, 1991. Print. Perl, Lila. Cloning. New York: Marshall Cavendish Benchmark, 2006. Print. Graham, Gordon. Genes. London: Routledge, 2002. Print decidedly kindly man, who despite his avuncular appearance, is the very embodiment of the ability ofthe scientific mind to break through to astonishing new heights of explaining and understanding thephysical world. In short, this is the face of a good genius, and it explains the way in which the boy (orgirl) genius is approvingly called an Einstein. By contrast, though there are some endearingly comicresonances (in The Munsters, for example), in general the fictional image of Frankenstein, and theultimately uncontrollable monster he created (replicated in a different technology by the computer HALin Stanley Kubricks film 2001: A Space Odyssey) is the archetypal image of the evil genius.Frankenstein was the invention of Mary Shelley. Jon Turney has shown how well versed Shelley was inthe science of her day, and how this played a crucial part in generating a mythology of huge culturalimportance, a mythology constructed in large part by fiction but no less influential in the reception offact (see Turney 1998 Frankensteins Footsteps). Indeed, the name of Frankenstein is regularly deployedto express, and to invoke perhaps, the recurrent fear that science may overreach itself - that genetictechnologists are creating Frankenstein foods, even that they are playing God or that atomicphysicists, in an excess of enthusiasm for science and all its works, have brought into existence a force -nuclear power - that threatens mass destruction, in its civil no less than its military manifestation.Indeed, so powerful has this second fear been that the world has largely turned its back on a source ofenergy more environmentally clean than any other, and whose actual (as opposed to potential) harm isvery much less than the sickness, death and damage caused by the use of fossil fuels. That the popular understanding of science and technology is Janus-faced in the way just described canhardly be doubted. The icons of Einstein and Frankenstein are equally prominent in our consciousness,and pull us in opposing directions. Just why this -8- Annas, George J. American Bioethics. New York: Oxford University Press, 2004. Print. ture, slavery, and genocide, that the International Criminal Court was established. Of course, state-sponsored crimes against humanity are still committed. But the world no longer ignores the rights ofpeoples who earlier in the century would simply have been designated “uncivilized” or consideredsubhuman.36 If we humans are to be the masters of our own destiny and not simply products of our newtechnologies (a big “if”), we will need to build international institutions sturdier than the UnitedNations and the International Criminal Court to help channel and control our newfound powers and toprotect basic human rights. Human dignity and equality are only likely to be safe if science isaccountable to democratic institutions and transparent enough that international deliberation can takeplace before irrevocable species-endangering experiments are conducted. Outside the realm of creating and producing weapons of mass destruction, science is not a criminalactivity, and human cloning and genetic engineering do not “fit” comfortably in the category of crimesagainst humanity. Moreover, in the face of the Holocaust and nuclear weapons, genetic engineeringappears almost benign. But this is deceptive because genetic engineering has the capacity to change themeaning of what it is to be human. There are limits to how far we can go in changing our naturewithout changing our humanity and our basic human values. Because it is the meaning of humanness(our distinctness from other animals) that has given birth to our concepts of both human dignity andhuman rights, altering our nature threatens to undermine our concepts of both human dignity andhuman rights. With their loss the fundamental belief in human equality would also be lost. Of course, weknow that the rich are much better off than the poor and that real equality will require incomeredistribution. Nonetheless, the rich may not enslave, torture, or kill even the poorest human on theplanet. Likewise, it is a fundamental premise of democracy that all humans, even the poor, must have avoice in determining the future of our species and our planet. Can universal human rights and democracy, grounded on human dignity, survive human geneticengineering? Without clear goals, the market will define what a better human is. Mass marketing andadvertising will encourage us to conform to some culturally constructed ideal rather than celebratedifferences. This is at least one major lesson learned from the cosmetic surgery industry: almost all of itspatient-clients want either to be reconstructed to appear normal or to be remodeled to appearyounger.37 It should at least give an immortality-seeking science (and society) pause that the more thehuman life span has increased, the more human societies devalue and marginalize the aged and idolizeand seek to emulate the bodies of the young. -37- The new ideal human, the genetically engineered “superior” human, will almost certainly come torepresent “the other.”38 If history is a guide, either the normal humans will view the “better” humans asthe other and seek to control or destroy them, or vice-versa. The better human will become, at least inthe absence of a universal concept of human dignity, either the oppressor or the oppressed. In short, asH. G. Wells made clear in his Valley of the Blind, it is simply untrue that every “enhancement” of humanability will be universally praised: in the valley of the blind, eyes that functioned were considered adeformity to be surgically eliminated so that the sighted person would be like everyone else.39 In TheTime Machine Wells himself envisioned the division of humans into two separate and hostile species,neither any improvement over existing humans.40 Ultimately, it is almost inevitable that genetic engineering will move Homo sapiens to develop into twoseparable species: the standard-issue human beings will be like the savages of the pre-ColumbianAmericas and be seen by the new genetically enhanced posthumans as heathens who can properly beslaughtered and subjugated. It is this genocidal potential that makes some species-altering geneticengineering projects potential species-endangering weapons of mass destruction, and the unaccountablegenetic engineer a potential bioterrorist. Science cannot save us from our inhumanity toward oneanother, it can just make our destructive tendencies more efficient and more bestial. Science andoppression can, in fact, go hand in hand. As historian Robert Proctor put it in concluding his study ofpublic health under the Third Reich, “the routine practice of science can so easily coexist with routineexercise of cruelty.”41 New Crusades Although we humans have not conquered death, we have invented an immortal creature: thecorporation. The corporation is a legal fiction endowed by law with eternal life (and limited liability).This creature has, like Frankensteins monster, assumed powers not envisioned or controllable by itscreator. In its contemporary form, the corporation has become transnational and thus under the controlof no government, democratic or otherwise. It swears no allegiance to anything and knows no limits inits pursuit of growth and profit. And as did the Spanish Crown, it has its own cover story. Corporations,at least life sciences and biotechnology corporations, seek profits not for their own sake, according totheir cover stories, but rather do scientific research for the betterment of mankind. Some in the lifesciences corporate -38- Krimsky, Sheldon. Biotechnics & Society. Westport, CT: Praeger, 1991. Print. Among the issues previously outlined, some have matured to the point where considerable governmentpresence has already begun. Other issues are still in their embryonic stage of public awareness anddebate. Some problems will never reach beyond a brief burst of media attention; others will activate litigiousdebate and aggressive legislation. For example, the international Biological Weapons Conventionprohibits its signatories from developing organisms for offensive purposes. 3 On May 22, 1990,President George Bush signed into law the Biological Weapons Anti-Terrorism Act of 1990, whichmakes it a civil crime to violate terms of the Biological Weapons Convention. 4 Environmentalapplications of GEOs have drawn considerable public debate and congressional study, but no newlegislation. The policy issues associated with transgenic animals, cast mainly in legal and ethical terms,have been decided primarily by the courts with only modest congressional initiatives. One area ofapplied genetics where social oversight has probably not kept up with the intensity of public reaction ishuman genetic modification. The Department of Health and Human Services (HHS) regulates humanexperiments involving the modification of genes. However, HHSs role is constrained by two importantfactors. First, the agencys authority is limited to institutions that receive federal funding. And second,the values of HHS are very much in consonance with high-technology medical interventions. The chapters in this third section of the book focus on the needs and prospects for regulating differentuses of genetic technologies. This chapter covers the genetic modification of humans, human embryos,or human ova; Chapter 10 examines initiatives for developing an integrated and coordinated frameworkfor federal regulation of biotechnologies, with special attention given to environmental applications.Finally, Chapter 11 looks at the role of technology assessment in an effort to develop an anticipatoryresponse to developments in biotechnology. CONCEPTUAL CLARIFICATIONS Few issues in the field of biotechnology produce as strong a public reaction as the prospect of humangenetic engineering. For some individuals, the mere mention of the term conjures up images of agenetically designed race of humans as depicted in Aldous Huxley 1932 novel Brave New World. Theidea that some group of humans would set themselves up as the architects of our genetic makeup playsout as some kind of demonic plan whose adherents, should they exist, must be morally deranged. But the term "human genetic engineering" (HGE) has a broader range of meanings than what issignified above as a centralized program of eugenics applied to fertilized human eggs. The mostgeneralized meaning of HGE is any controlled intervention designed to affect the constitution orfunction of one or more human genes either directly in the mature organism or indirectly in human -156- germ cells. This definition includes a number of activities that are summarized as follows. 1. Use of chemicals to alter gene function in a human, human fetus, or fertilized egg. 2. Transplantation of genes in the somatic cells of humans (all cells other than germline orreproductive cells). 3. Cloning of a human being. 4. Transplantation of genes to the germ cells of humans (sperm or egg cells; in vivo or in vitro). 5. Deletion or addition of genes to the fertilized human egg prior to implantation or gestation. 6. Deletion or addition of genes to the human fetus. The ethical questions surrounding HGE are contingent on which of its several meanings is beingadvanced. Human gene therapy applies to those uses of HGE that are aimed at curing disease. Proposalsintroduced by members of the scientific community generally substitute the term "gene therapy" for"genetic engineering" in order to cleanse the term of any negative connotations. 5 Notwithstanding suchefforts at conceptual "sterilization" however, the two terms are still used interchangeably by the mediaand in popular discourse. Somatic cell therapy (2) is distinguished from germline therapy (4) in that the latter change, unlike theformer, can be passed on to future generations. Eugenics is a concept that is much broader than HGE. Itmeans "cleaning up," "purifying," or improving the human gene pool. 6 Genetic engineering potentiallycan be used to carry out a eugenics program. But there are many other paths to eugenics, including anational policy of selective breeding as well as the widespread use of genetic screening in conjunctionwith selective abortion. Sometimes eugenics is defined as "the science of breeding," while elsewhere it is understood as anational policy directed at "purifying" the race. Individual decisions unrelated to a pattern of state-controlled procreation for the purpose of "improving the species" generally do not qualify as eugenicactivities. However, if the state supports or mandates genetic screening (amniocentesis) foridentification of certain traits of the fetus (mongolism, Tay Sachs), and encourages or providesincentives for abortion when one or more traits are discovered, then a eugenics policy is being advanced. Certain forms of human genetic engineering have nothing to do with eugenics whether or not theseactivities are supported by the state. Gene therapy of human somatic cells that does not affect thegermline and therefore will not be passed on to subsequent generations, does not qualify under the termeugenics. EARLY DISCUSSIONS OF HUMAN GENE THERAPY The prospect of altering human genes to treat disease was widely discussed by biologists around themid- to late 1960s. At that time geneticists discovered -157- Perl, Lila. Cloning. New York: Marshall Cavendish Benchmark, 2006. Print. stem-cell lines (or colonies) so that the regeneration of damaged nerves may be attempted. However, thepresident, who was reelected in November 2004, and many others, view the harvesting of stem cells fortherapeutic purposes as a form of murder because it involves destroying an embryo that has thepotential to become a human life. Other figures in the public eye also urge that stem-cell research be allowed to continue under theauspices of government funding. They include Nancy Reagan and Ron Reagan, the wife and the son offormer president Ronald Reagan, who died in June 2004, a victim for ten years of Alzheimer’s disease.Afflicted brain cells, such as those causing Alzheimer’s disease and Parkinson’s disease, are believed tobe capable of regeneration through stem-cell therapy. A hopeful development to advocates of stem-celltherapy was the November 2004 passage in the state of California of Proposition 71, appropriating $3billion for stem-cell research in the state. Also, private corporations and research centers are free toproduce and experiment with embryonic stem cells. Yet another result of the genetic revolution is the issue of human genetic engineering, through genetesting, gene therapy, and germline manipulation. Gene testing for prenatal screening of inheriteddiseases has proved to be relatively safe and accurate as a diagnostic tool. However, it has led to muchcontroversy in cases where abnormalities are detected and the issue of abortion comes to the fore. Gene therapy—the treatment of disease by implanting healthy genes to replace defective ones in humanswith existing conditions—has proven so far to be experimental and, in certain cases on record,dangerous and even fatal. As a result, its application remains in limbo. Germline engineering—the enhancement of humans through genetic manipulation of the embryo—forthe purpose not only of eliminating inherited diseases but of cre -118- Hildyard, Nicholas, & Sarah Sexton. “No Patents on Life”. Forum for Applied Research and Public Policy 15.1 (2000): 69-72. Print. No Patents on Life Hildyard, Nicholas, Sexton, Sarah, Forum for Applied Research and Public Policy Patents on genetic information have little to do with the public good and much to do with private greed. Most people assume that their bodies are their own--and no one elses. They assume that their blood istheirs, unless they care to donate some of it. They assume that their kidneys, eyes, spleens, and heartsare theirs and will go with them to their graves unless they choose to give them to others. They mightalso assume that their genes--the inherited biological material inside each of their cells--are their own. But in many countries, including the United States and the United Kingdom, they could well findthemselves on the wrong side of the law. Over the last 20 years or so, laws have gradually changed toallow companies or individuals to patent bacteria, animals, plants, isolated human genes, and bodyparts after they have been removed from the body. Once patented, these all effectively become theproperty of the patent holder. [1] There is intense public concern over the ethical and social implications of this trend in legislation, whichis currently being challenged in Europe. A survey published by the polling firm Eurobarometer in June1997, for example, reveals a deep ambivalence among the European public about much of modernbiotechnology. What worries people most is not the potential risk to the environment or human health--risks that are in fact substantial--but the morality that turns isolated parts of people and livingorganisms into property for others to profit from. Patenting Life Until recently, patents have primarily been granted for mechanical inventions--not living things. Butwith the advent of new genetic engineering techniques-particularly that of transferring genes betweentotally unrelated species of plants, animals, or microorganisms--biotechnology companies and universityresearchers have applied for and in some cases been awarded patents not only on the processes to isolateand characterize genes but also on the genes themselves. As a group of British scientists pointed out in1997, "If this principle had been applied in chemistry, the elements would have been patented." [2] The patents on living organisms granted under existing patent law in Europe have generated muchcontroversy and provoked drawn-out legal challenges. For instance, a wide range of medical and othergroups challenged a patent granted by the European Patent Office to Biocyte, a U.S.-based company, onumbilical-cord blood cells from fetuses and newborn babies. The patent gave the company completecontrol over the extraction and use of the cells and over any therapies developed in connection withthem. In addition, the cells can be used without permission of the donors or their mothers. Because of challenges and delays like this, the biotechnology and related industries have pushed hard forthe patenting system explicitly to encompass living material. Thus, European Union legislation passedin May 1998, but which is not yet in force, effectively defines a gene not as a discovery, which cannot bepatented, but as an invention, which can. If this legislation is enacted, it could severely curtail the scopefor future challenges to patents on life. The genes associated with disorders such as cystic fibrosis and diabetes could become the property of amultinational drug company. This means that members of the public who undergo genetic screening tosee whether they are affected or not would have to pay a royalty to the company that owns the patent onthe genes because the test uses the gene. No Patent, No Cure? In Europe, public unease over genetic engineering has grown in recent years. The European biotech andpharmaceutical industries are responding by insisting that without the protection a patent affords,companies would be unwilling to invest hundreds of millions of dollars in developing biotech products.[3] Potentially beneficial discoveries would therefore either not be made at all or would just languish inthe laboratory and never find their way to the market to benefit those potentially affected by geneticallyinherited disorders. In effect, they claim: no patents, no cures. However, numerous groups that work with or represent people with genetically inherited disorders--those who might have the most to gain from the new technology--wholeheartedly reject this view. Farfrom promoting such research, they argue that patenting genes actually hinders scientific inquiry andundermines medical progress. In Great Britain, for example, the Regional Genetic Service of the CentralManchester Healthcare Trust, a program administered by the National Health Service, fears that abiomedical company that has isolated a gene and then been granted a patent on that gene would be ableto control all future research and medical developments involving that gene. Such control kills, ratherthan fosters, research, the Trust believes. [4] Other health care professionals in the United Kingdom point out that most genetic research has beenfunded largely by the public sector. The free flow of information among government and charityorganizations is threatened by gene patents. [5] Hindering Research Those who oppose the patenting of genes and living organisms warn that patents in science promotesecrecy prior to the granting of a patent and hinder the free exchange of ideas and informationnecessary for cooperative scientific effort. Biotech companies are in business primarily to make a profit,and their drive to gain exclusive access to discoveries promotes an atmosphere of secrecy, says U.S.biochemist Arthur Kornberg of Stanford University, who has worked with a variety of biotechcompanies for 25 years. [6] These threats are very real, particularly at a time when university scientists are being encouraged--orcompelled by restricted public funding--to find industrial sponsorship for their work. Researchers, forexample, may find companies reluctant to pay for their work if a key element of the basic knowledgeinvolved is already controlled by a competitor. In other cases, research organizations--both public and private - that have been the first to isolate agene may restrict the terms under which other scientists continue to work with that gene. Already,British charities that have spent millions of pounds on research into cystic fibrosis and breast cancerface the prospect of paying royalties to American or Canadian research groups--even though thesuccessful genetic discoveries of these groups were built on the work of the whole research community. In addition, many scientists who dont agree that genes and living organisms should be patented feelobliged to do so because if they dont, others could patent their work. In addition, they could findthemselves paying royalties to patent holders yet not receive royalties themselves. As Professor Martin Bobrow, formerly at Guys Hospital, London, has said, "We, and many otheruniversity departments and public research institutions, are having to spend money taking out patentsbecause we cannot afford not to." [7] For poorer countries in the Third World, the impacts of patenting are likely to be especially severe. AsPiet Bukman, who was responsible for development cooperation at the Dutch Ministry of Foreign Affairsin 1989, has noted, "A fence is being built around biotechnological know-how, which can only be openedfrom the inside." [8] And it is the developed countries that hold the key. Scientists are also concerned that, as the research agenda becomes increasingly commercialized--aprocess greatly enhanced by patents--funds will be channeled into commercially profitable venturesrather than into research for the public good. The quest for patentable products targeting human genetic disorders is also likely to divert much-needed funding from research into preventative health measures--such as minimizing exposure toindustrial and other pollutants--that would benefit the public but bring few profits to biotechnologycorporations. It has been estimated, for example, that at least 90 percent of human breast cancers areunrelated to breast cancer genes but are triggered by environmental pollutants, diet, and lifestylefactors. The search for a technofix, however, means that alternative approaches to reducing disease getlittle or no funding. Curbing Competition Patent law, as it currently stands, not only allows monopoly control of new technologies and processesbut actively endorses such powers. Far from encouraging competition, and thus new research, it inhibitsit. This is especially true for broad spectrum patents that cover all genetically engineered species--forinstance all generically engineered cotton, soybeans, or cattle, no matter what the gene spliced into thespecies. As Paul Martin of the Science Policy Research Unit at the University of Sussex points out, companiesholding patents are often given a complete monopoly over the development of all therapeutic proteinproducts derived from the gene. "In some cases, the granting of a gene patent to a firm interested in thetreatment of one disease has forced others to abandon well-established programmes developing thesame protein for other disease indicators." Chiron, a California-based biotech company, for example, owns a patent on the screening kit forhepatitis-C, an infectious disease of the liver. The test uses information about the proteins that make upthe coating of the virus, proteins that the companys scientists discovered. The patent claims exclusiverights to the use of that information. So Chiron can determine who can use it and on what terms. In 1994, the U.S. Supreme Court rejected an appeal against the patent by one of Chirons competitors,even though the presiding judge admitted that a patent holders rights to restrict competition and raisethe price of its products was "contrary to the public interest." He described this as "the price that has tobe accepted" to secure the advantages of the patent system. In addition, the new E.U. legislation explicitly bars patents on living organisms in their natural state.This means that the products of plant or animal breeding that use genetic engineering, which involvesisolating living material from its natural state, could be patented, but those derived from conventionalbreeding practices could not. To offer direct incentives to one industry over another is to promote unfaircompetition. Public Investment The extraordinary advances in biomedical knowledge over the past 40 years have for the most part notresulted from investment by venture capitalists and pharmaceutical firms. They have resulted frompublicly funded education and research, financed with money from the taxpayer or charitableorganizations. The public will thus have to pay the price of research twice over if patents are granted ongenetic discoveries. In the United Kingdom, for example, the government in the 1980s and early 1990s played a major rolein financing biotech research carried out by universities and other research institutes. The governmentalso provided a significant proportion of the start-up capital for two of the countrys most prominentbiotechnology companies. It later sold its interest in one company-- Celltech--to a group of privateinvestors. Furthermore, public financing will have to continue if the biotechnology industry is to survive. "Thepublicized vigor and successes of biotech companies may foster illusions that basic research can be leftto industry," Kornberg says. In the United States, "more than 90 percent of such research has, in thepast, and must be, in the future, done in university and other academic settings, requiring massivesupport to the tune of billions of dollars from the taxpayer through the federal government." [9] In addition to benefiting from taxpayers money, the biotech industry has also profited from thegoodwill and co-operation of the public. Two of the genes for inherited breast cancer, for example,which have been patented in the United States by Myriad Genetics, were found only with the help ofphysicians and researchers working with other organizations, not to mention the numerous familieswith hereditary breast cancer who took part in a worldwide research program that was largely publiclyfunded. Wendy Watson, founder of the Hereditary Breast Cancer Foundation and one of several women whohave had a preventative mastectomy, has said, "Nobody has the right to patent this kind of information,which was only found with the help of the many families who have suffered a case of hereditary cancer.It is morally wrong that any company should benefit from that kind of information." [10] Other genetically inherited diseases whose discovery rested on publicly funded research includepolycystic kidney disease and Huntingtons chorea. To patent the genes that are linked to these diseases,and to thereby control the therapeutic use of the information gained, could likewise lead to privateprofits from knowledge originally gathered for the public good. Access to Treatment No one is suggesting that companies should ignore the marketplace or forgo profits. But whats good forbusiness may not always be good for cancer patients, the disabled, or the poor. Indeed, an increasingnumber of patient groups in Britain, such as Disabled Against Animal Research and Exploitation(DAARE), are concerned about the implications of patents on genes for medical treatment for those onlow incomes. DAARE, which represents people with serious and incurable conditions that may have genetic links suchas motor neuron disease and Parkinsons disease, states that allowing patents on genes will increasehealth costs and place the fruits of public research into private hands to benefit the few. Similar concerns have been expressed over the implications of patenting for breast cancer screening.The U.S. company Myriad Genetics has applied for a European patent on the breast cancer gene BRCA-1, as well as on all therapeutic and diagnostic applications resulting from the knowledge of the gene. Itcurrently costs the British National Health Service the equivalent of $US960 to screen for the two breastcancer genes that have been discovered, BRCA1 and -2, and around $US 50 for each subsequent test. If the European patent is granted, Myriad Genetics will be able to charge whatever it likes every time adiagnostic screening test is carried out. The British National Health Service would be unable to bear theroyalty payments. And this is for just one gene test. If extra money is not made available to the National Health Service, itwould have to ration or charge for many services that were previously free. Private health insurers arealso likely to have to raise their costs. Many patients will simply be unable to pay, exacerbatinginequalities in health care. Indeed, the Regional Genetic Service of Central Manchester Healthcare NHS Trust warned in 1997 thatpatenting genes could make the possibility of genetic testing for disorders such as heart disease orbreast cancer so prohibitively expensive it would be beyond the scope of the NHS. While new techniqueswill soon allow rapid and inexpensive analysis of genes, if a royalty has to be paid on each gene analyzed,testing for breast cancer predisposition-which could involve 10-15 different genes--would be tooexpensive. [11] Job Insecurity Proponents of the European life patent legislation maintain that Europes biotechnology companies willflee to the United States, where the industry is afforded a greater degree of patent protection, at the costof European jobs and profits. But more than half the U.K. biotechnology companies interviewed for a 1994 survey published by ArthurAndersen and the Bio-Industry Association said they preferred the British patenting system to the U.S.system, which they viewed as more costly, more time-consuming, and more complex. Critically, less than 40 per cent of companies regarded secure intellectual property rights--for example,through patents on genes--as important to their competitive advantage. And more than half said thatexisting U.K. patent law offered them adequate security of intellectual property rights and sufficientcompetitive advantage. In fact, the European biotechnology sector is growing now even without explicit patent protection.Between 1996 and 1997, expenditure on biotechnology research and development in Europe went up 20percent, without explicit patent protection, compared with 3 percent in the United States.[12] U.S.-based companies with biotech interests have lobbied the hardest for Europe to adopt patentprotection. If Europe adopted patent legislation similar to that in the United States, such companieswould be able to charge European companies, hospitals, and research labs for using the genes and DNAsequences they have patented under U.S. law. At present, European companies do not have to pay U.S.patent royalties and licence fees on genes patented in the United States. Patenting is about securingmarkets, in this instance, the European market. Indeed, since 1990, U.S. companies have filed threetimes as many European patents as E.U. companies. The competitiveness of E.U. biotechnology companies will depend on the profitability of their products,not just on legal patents. DuPonts experience with its patented oncomouse--the mouse geneticallyengineered to be predisposed to cancer--illustrates that patents do not equal profits nor, in the longterm, jobs. By 1993, the chemical giant had not persuaded a single pharmaceutical company to buy alicence to use the mouse--it was too expensive. Certainly, E.U. pharmaceutical companies have been buying up or investing in U.S. biotechnologycompanies in recent years. But this trend is due far less to a lack of patent protection in Europe than tothe fact that the patents held by many of these companies on their existing, non-genetically engineereddrugs expire within the next few years. The companies need new products and new markets. Consequently, both E.U. and U.S. pharmaceutical companies, which are in a similar position, have beenglobetrotting in search of small biotech laboratories with products and expertise but no money tofinance their further development. The Economist spelled out the rationale behind biotech mergers inMay 1995: Never was a romance more obviously made in heaven. On one side there stands a string ofdestitute young biotechnology firms, abandoned by their previous lovers on Wall Street just as theirspiffing new products are about to enter the costliest phase of clinical trials. On the other is a group ofpharmaceutical giants, all desperate for new R & D ideas as the patents on their existing drugs expireand--by biotechnology standards--with cash to burn. No wonder there has been a certain amount ofhopping in and out of bed. [13] This need for new products, more than anything, explains the pharmaceuticals rush to buy up or fundbiotech laboratories and to secure monopoly marketing rights to the fruits of their--often publiclyfunded--research through patents on genes. A 1997 survey of UK biotechnology companies, conducted by management consultants Arthur Andersen,predicted, Over the next three years, U.S. [biopharmaceutical] alliances [with U.K. companies] are expected to takea clear lead. This reflects both the size of the U.S. market and the market position and power of thepharmaceutical companies. In addition, many observers believe the domestic U.S. bio-partneringmarket is now close to saturation and that U.S. companies may therefore turn increasingly to Europe toacquire promising technology. [14] In addition, many companies in the United States have to spend, or at least reserve, a substantial part oftheir monies to defend any legal challenge to a patent they have been granted or to mount suchchallenges themselves. For example, one of the leading U.S. biotechnological companies, Genentech, has four times as manylawsuits to protect its patents as it has products. [15] At least one company has been created in theUnited States whose main business, according to the Wall Street Journal, "is buying up broad patentsand then suing other companies for alleged infringements." [16] U.S. biochemist Arthur Kornbergconcludes of the U.S. situation: "Patent litigation in industry and academia and the new patentconsciousness in academic circles have become serious and highly counterproductive preoccupations."[17] Increased Scrutiny The overwhelming share of money that sits in the treasure chests of global biotech companies has beenput there from public funds. Research grants, government sponsorship, university funding, charitabledonations and even payments from public health and agricultural services for patented productsthemselves are the rich public source of what has become private bounty. Some regulation of intellectual property rights as they relate to biotechnological products is certainlyneeded. Such regulation, however, should be preceded by independent substantive assessments of theenvironmental, social, and economic impacts of genetic engineering, accompanied by wide-ranging,informed public debate and scrutiny of the developments in biotechnology; including patenting. For these many reasons, the UK Working Group on Legislation for Collective Knowledge andBiodiversity--a coalition of scientists, parliamentarians and concerned citizens--is proposing that theEuropean Union should evolve a framework for legislation that explicitly excludes specified processesand products from patentability, in particular those involving living material. This would represent asharp departure from its current approach of explicitly including life forms as patentable entities. The European Union should also: * Encourage innovation in the biological sciences for the benefit of the public good and theenvironment; * Establish a boundary between public and collective interests in society and the private sector,particularly insofar as intellectual property is concerned, so that the public good is enhanced, notundermined; * Opt for the precautionary principle in assessing the risks of biotechnology and establish strict liabilityguidelines; * Establish mechanisms to allow patents to be challenged before, rather than after, they are granted,particularly on the grounds of protecting the public good and preventing violations of collective rights; * Recognize and protect collective knowledge processes as part of the collective domain of humanity;and * Establish a system for monitoring scientific advancement for the public good. The push for patents on genes is not altruistic. It is not about encouraging scientific endeavor orpushing the frontiers of medical knowledge. It is not about feeding the world or promoting the healthand well-being of all. It is about ring-fencing knowledge. It is about privatizing the very basis of life.Biotech patenting has little to do with the public good and much to do with private greed. Nicholas Hildyard and Sarah Sexton work with the Corner House, a U.K-based research and solidaritygroup that produces regular briefing papers on social and environmental justice issues. [18] NOTES (1.) Depending on the country granting the patent, a patent gives monopoly rights for 17 or 20 years tothe patent holder to use an invention for commercial gain. To be patentable, an invention-a product or aprocess-must meet three criteria: it must be novel, involve a nonobvious inventive step; and have acommercial application. A patent holder has the right to charge others a license fee for use of thepatented product or process and to extract a royalty on any commercial applications derived from it. (2.) H. Dalton et al, "Patent threat to research," Nature, 385 (February 20, 1997). (3.) The main industrial sectors currently exploring commercial uses of biotechnology arepharmaceuticals, food and agriculture, chemicals, diagnostics and instrumentation, and environmentalclean up. (4.) Letter from Gareth Evans and others, Regional Genetic Service, Central Manchester HealthcareNHS Trust to all members of the European Parliament (July 1, 1977). (5.) Statement by the U.K. Clinical Genetics Society, the Clinical Molecular Genetics Society, theAssociation of Clinical Cytogeneticists, and the Genetic Nurses and Social Workers Association, 1994,reconfirmed 1997. (6.) A. Kornberg, The Golden Helix: Inside Biotech Ventures (Sausalito, CA: University Science Books,1995), p.247. (7.) Martin Bobrow, File on Four, BBC Radio December 4, 1994. (8.) P. Bukman, "The Government Role in Biotechnology and Development Cooperation," Trends inBiotechnology 6 (1) (January 1989). (9.) Kornberg, The Golden Helix. pp.247-248. (10.) Wendy Watson, Hereditary Breast Cancer Foundation, quoted in the (London) Sunday Times(April 20, 1997). (11.) Letter from Gareth Evans and others. (12.) 1996 survey of the biotechnology industry by management consultants Ernst & Young. (13.) "Biotechnology Mergers: Unseemly Couplings," Economist (May 13, 1995), pp.98-101. (14.) Arthur Andersen, Andersen Worldwide SC, "UK Biotech 97-Making the Right Moves" (London,1997). (15.) C. Fowler, "Biotechnology, Patents and the Third World," in Biopolitics: A Feminist and EcologicalReader on Biotechnology, V. Shiva and I. Moser, eds. (London: Zed Books, 1995), pp.214-225. (16.) Cited in Fowler, "Biotechnology, Patents and the Third World." (17.) Kornberg, The Golden Helix, p.233. Bethell, Tom. “The Human Genome Project: Another God that Failed”. The American Spectator February 2004: 38. Print. The Human Genome Project: Another GodThat Failed Bethell, Tom, The American Spectator FOR YEARS, THE HYPE surrounding genetic engineering and gene therapy knew no bounds. With theHuman Genome Project-publicized at the height of the dot com mania-things went from bad to worse.The genome was "decoded," then fully decoded. Then a final draft was decoded one more time, fully andfinally. That was last spring. And still they didnt know how many genes we have. Twenty thousand?Forty thousand? About as many as roundworms, some guessed. Something was wrong. But there had been a coronation, and now there was no going back. The genomewas the marvel of our age. Knowing the nucleotide sequence of the DNA would allow us to decipher themysteries of life. Now we could repair the misprints and defects that had brought us disease and misery.Sooner or later, death itself would be overcome. There was no adversary press. The liberals who had brought us social engineering were not going todispute the claims of human engineering. The breakthroughs, endlessly touted, constituted the newp Read More
Cite this document
  • APA
  • MLA
  • CHICAGO
(Aspect of Human Genetic Engineering Case Study Example | Topics and Well Written Essays - 2750 words - 2, n.d.)
Aspect of Human Genetic Engineering Case Study Example | Topics and Well Written Essays - 2750 words - 2. https://studentshare.org/engineering-and-construction/1825462-human-genetic-engineering
(Aspect of Human Genetic Engineering Case Study Example | Topics and Well Written Essays - 2750 Words - 2)
Aspect of Human Genetic Engineering Case Study Example | Topics and Well Written Essays - 2750 Words - 2. https://studentshare.org/engineering-and-construction/1825462-human-genetic-engineering.
“Aspect of Human Genetic Engineering Case Study Example | Topics and Well Written Essays - 2750 Words - 2”. https://studentshare.org/engineering-and-construction/1825462-human-genetic-engineering.
  • Cited: 0 times

CHECK THESE SAMPLES OF Aspect of Human Genetic Engineering

Why the Future Doesn't Need Us by Bill Joy

This article "Why the Future Doesn't Need Us by Bill Joy" explains the possible advantage and disadvantages of the invention of nanotechnology, genetic engineering, and robotics.... Bill explains in his book about the possible advantage and disadvantages of the invention of nanotechnology, genetic engineering and robotics (GNR).... In regard to genetic engineering, Joy is of the opinion there can arise a situation called “white plague” by which the terrorist or human beings can wipe out certain group of genes by genetic manipulation....
2 Pages (500 words) Article

Fruits: A Dichotomy of Taste

In addition, due to the multitude of different ways in which plants reproduce, natural selection and genetic engineering have both led to the creation of hybrids, resulting in an increase in flora genetic variability.... In addition, genetic engineering is being used in order to change the incubation time required to create different fruits by stimulating growth so that mass crops can be produced, however this has effects such as having individual plants that are smaller compared to their natural counterparts (Ulukan, 2009)....
2 Pages (500 words) Essay

Genetic Engineering of Plants

The importance of genetic engineering within plants is such that it brings medicinal aspects into the… The medicinal role is highlighted by the significance of the uses that are brought towards this field.... The other reason for the support of genetic ID Lecturer Botany The genetic engineering of plants is the change in the plant's genome by making use of the DNA technology.... The importance of genetic engineering within plants is such that it brings medicinal aspects into the fray....
1 Pages (250 words) Essay

Human cloning and stem cell research

In considering current usages of genetic engineering one is able to establish a more broad ranging understanding of these questions; in these regards, genetic engineering finds widespread use in agricultural procedures, as well as genetically engineered animals (‘Ethical Issues').... In these context of understanding it has examined broad ranging uses of genetic engineering as well as the nature and process of stem cell treatments and the potential for human cloning....
2 Pages (500 words) Essay

Dangers of Genetically Altered Foods

However, the studies revealed that it was not the added lectin that was responsible for these side effects, but the engineering process itself.... This is mainly because the engineering may bring imprecise technologies, different side effects, and crop failure along with threatening the population's food supply.... This is because a control group that was fed with potatoes containing the substance was not affected as they had not undergone the genetic modification processes (Pusztai, p....
2 Pages (500 words) Essay

Project Preparation Assignment

For example, genetic engineering and gene-based medications could pose a big threat to the products of the company.... It has three segments; the pharmaceutical, the human health, and the performance chemicals.... It has three segments; the pharmaceutical, the human health, and the performance chemicals.... The human Health segment had net sales of $160,217, which represented a 23....
1 Pages (250 words) Essay
sponsored ads
We use cookies to create the best experience for you. Keep on browsing if you are OK with that, or find out how to manage cookies.
Contact Us